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Analytical structure factor of a two-species polydisperse Percus-Yevick fluid with bimodal Schulz
distributed diameters

M. Ginoza and M. Yasutomi
Department of Physics, Faculty of Science, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0213, Japan

~Received 11 August 1998!

An analytic expression is obtained for the static structure factorS(k) of a two-species polydisperse fluid of
hard spheres in the Percus-Yevick approximation. The size polydispersity is included via a bimodal Schulz
distribution. The derived expression is used to study the effects onS(k) of the size polydispersity in a
equiatomic binary mixture of hard-spheres. The main features of the effects are~1! the damping of the
oscillations inS(k) beyond its principal peak and larger values ofS(k) in the long-wavelength limit, relative
to the monodisperse case; and~2! the stronger effect of the species with the larger average particle size.
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I. INTRODUCTION

Colloidal dispersions, as found in nature, are norma
multispecies, polydisperse, heterogeneous systems.
work is concerned with a model to study multispecies, po
disperse colloidal fluids. Given the complexity of such sy
tems analytical models have been proposed in the form
polydisperse hard-sphere fluids@1–5#, polydisperse charged
hard sphere fluids@6,7#, and polydisperse hard-sphe
Yukawa fluids@8–11#.

Griffith, Triolo, and Compere have recently derived
analytic expression for the static structure factor of a sing
species polydisperse Percus-Yevick~PY! hard-sphere fluid
using the Schulz distribution for the hard-sphere diame
@5#. Here we extend this work to the case of a two-spec
polydisperse PY hard-sphere fluid. As will be shown belo
this extension is made possible by the results of our rec
previous work@10,11#.

Let us consider a two-species polydisperse fluid in a v
ume V. We represent each species as I and II, respectiv
To consider the polydispersity we assume that each spe
is itself a multicomponent fluid with an arbitrary number
components. The number of components of speciest (t5I
and II! is denoted byn(t), and thei component of specie
t(t5I and II! consists ofVr i

(t) hard-sphere particles with
diameters i

(t) , wherer i
(t) is the number density of compo

nent i of speciest. For such a fluid we can make use of th
analytic solution of the Ornstein-Zernike~OZ! equation in
the PY approximation@12,13#. In the limit of infinite number
of components, the fluid consists of spheres with conti
ously distributed diamaters.

Below we present the analytic expression for the sta
structure factorS(k) of the two-species polydisperse fluid o
PY hard spheres with bimodal Schulz distributed diamet
Moreover, we also illustrate the effects of polydispersity
S(k). In Sec. II we present a useful, compact form ofS(k) of
a hard-sphere PY fluid which is obtained by using t
method discussed in our recent previous paper@10#. The ac-
tual result forS(k) is presented in Sec. III. The effects o
polydispersity onS(k) are shown in Sec. IV.
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II. STRUCTURE FACTOR OF PY FLUID

We number the components of the fluid under study a

i 51,2, . . . ,n~ I!,n~ I!11, . . . ,n~ I!1n~ II !. ~2.1!

Henceforth we drop, until the end of this section, all t
superscripts which indicate species I and II as there is
possibility of confusion.

The partial structure factor of componentsi and j , Si j (k),
is given by the general expression@9#

Si j ~k!5d i j 22 Re@$ĝs~ ik !% i j #, ~2.2!

where thei j element of the symmetric matrixĝs(s) is de-
fined by

$ĝs~s!% i j [
2p

s
~cicj !

1/2rg̃i j ~s!. ~2.3!

In Eq. ~2.3! ci is the number concentration of thei compo-
nent,r denotes the total number density, and

g̃i j ~s![E
0

`

dr rgi j ~r !e2sr

defines the Laplace transform of the partial pair distribut
function gi j (r ).

The total structure factorS(k) is defined by

S~k!5(
i j

~cicj !
1/2Si j ~k!. ~2.4!

Note that the definition ofS(k) used here differs from its
usual definition, which also involves the scattering form fa
tors. We follow here the definition used, for instance,
Refs.@5# and@10#, and reserve the name of scattering inte
sity I (k) to what other authors call the ‘‘total structure fa
tor.’’ We shall not make reference toI (k) in the rest of the
paper. Note also that, given Eqs.~2.2! and ~2.4!, the calcu-
lation of S(k) requires a knowledge ofĝs(s), to which we
turn now for the particular case of the hard-sphere fluid
the PY approximation.
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In the Baxter formalism, the PY solution of the OZ equ
tion is given by the Baxter functionQi j (r ), or its transform
Q̃i j ( is), as@13#

Q̃i j ~ is!5E
l j i

`

dr Qi j ~r !e2sr

5esl i j @s i
3c1~ss i !Aj1s i

2w1~ss i !b j #, ~2.5!

where

Aj5
2p

D S 11
pz2

2D
s j D , ~2.6a!

b j5
p

D
s j , ~2.6b!

c1~x!5@12x/22~11x/2!e2x#/x3,

w1~x!5@12x2e2x#/x2, ~2.6c!

zm5(
l

r ls l
m ,

and

D512pz3/6512h, ~2.6d!

whereh denotes the packing fraction.
Using the PY solution above, the Laplace transform of

OZ equations reads@14,15#,

(
l

2pg̃i l ~s!@d l j 2clrQ̃l j ~ is!#

5H S 11
ss i

2 DAj1sb j J e2ss i j

s2
. ~2.7!

Equation~2.7! can be rewritten, by using Eq.~2.3!, in the
matrix form

ĝs~s!Q̂~ is!5L̂~s!, ~2.8!

where thei j elements of the matricesQ̂( is) and L̂(s) are
defined by

$Q̂~ is!% i j [d i j 2~cicj !
1/2rQ̃i j ~ is! ~2.9!

and

L i j ~s![
~cicj !

1/2r

s3
e2ss i j H S 11

ss i

2 DAj1sb j J . ~2.10!

Equation~2.8! may be written as

ĝs~s!5L̂~s!R̂~s!, ~2.11!

whereR̂(s) is defined by

Q̂~ is!R̂~s!51. ~2.12!

Now, with the use of Eqs.~2.6a! and ~2.6b!, Eq. ~2.10!
gives
-

e

L i j ~s![~cicj !
1/2e2ss i j (

n51,2
wi

~n!~s!a j
~n! , ~2.13!

where

a j
~1!51, ~2.14a!

a j
~2!5s j , ~2.14b!

wi
~1!~s!5

2pr

Ds3 S 11
ss i

2 D , ~2.15a!

and

wi
~2!~s!5

pr

Ds3H s1
pz2

D S 11
ss i

2 D J . ~2.15b!

Moreover, the substitution of Eq.~2.5! into Eq. ~2.9!, with
the use of Eqs.~2.6a! and ~2.6b!, yields

$Q̂~ is!% i j 5d i j 2~cicj !
1/2esl i j (

n51,2
Yi

~n!~s!a j
~n! , ~2.16!

where

Yi
~1!~s!5

2pr

D
s i

3c1~ss i ! ~2.17a!

and

Yi
~2!~s!5

pr

D H pz2

D
s i

3c1~ss i !1s i
2w1~ss i !J . ~2.17b!

From the definition ofR̂(s) @Eq. ~2.12!#, and the expres-
sion for $Q̂( is)% i j @Eq. ~2.16!#, the i j matrix elements of the
former are given by~see Refs.@9–11#!

Ri j ~s!5d i j 1~cicj !
1/2esl i j (

n51,2
Yi

~n!~s!L j
~n!~s! ~2.18!

with

L j
~n!~s!5 (

m51,2
G~n,m!~s!a j

~m! . ~2.19!

The matrixĜ(s), with matrix elementsG(n,m)(s), is defined
by the relation

Ĝ~s!@12F̂~s!#51, ~2.20!

with the nm matrix elements ofF̂(s) given by

F ~n,m!~s!5(
i

cia i
~n!Yi

~m!~s!. ~2.21!

We are now in a position to write downS(k). First, sub-
stitute Eqs.~2.13! and~2.18! into Eq.~2.11!, and also use Eq
~2.19!, to obtain

$ĝs~s!% i j 5~cicj !
1/2e2ss i j(

n
(
m

wi
~n!~s!G~n,m!~s!a j

~m! .

~2.22!

Second, substitute Eq.~2.22! into Eq. ~2.2! to give
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Si j ~k!5d i j 2~cicj !
1/22 ReFe2ss i j(

n
(
m

wi
~n!~s!G~n,m!~s!a j

~m!G
s5 ik

. ~2.23!

Finally, from Eqs.~2.4! and ~2.23!, we obtain

S~k!5122 ReF(
n

(
m

Fw
~n!~s!G~n,m!~s!Fa

~m!~s!G
s5 ik

, ~2.24!
o

am

ai
s

et
where

Fw
~n!~s![(

i
cie

2ss i /2wi
~n!~s! ~2.25a!

and

Fa
~m!~s![(

i
cie

2ss i /2a i
~m! . ~2.25b!

Equation~2.24!, together with Eqs.~2.25a! and~2.25b!, ren-
ders a compact and useful expression forS(k) which we use
in Sec. III in a specific context.

III. S„k… FOR TWO SPECIES POLYDISPERSE PY FLUID

We apply the results obtained in Sec. II to study a tw
species mixture of hard spheres where both the species
size polydisperse, and the distribution of hard sphere di
eters is given by the bimodal Shultz distribution~see below!.
The application corresponds to a case thatn(I) and n(II) are
infinite. Write the number of hard spheres in the dom
(s,s1ds) by Vr f (s)ds; then the distribution of diameter
f (s) is given by

f ~s!5 (
t5I,II

c~t! f ~t!~s!, ~3.1!

with c(t)5r (t)/r. The Shultz distribution functionf (t)(s) is
defined as

f ~t!~s!5F t ~t!11

s0
~t! G t~t!11

s t~t!

t ~t!!
expS 2F t ~t!11

s0
~t! Gs D ,

~3.2!

wheres0
(t) denote the average diameters, andt (t) are non-

negative integers.
In order to calculate theFv

(n)(s), Fa
(m)(s), andF (n,m)(s)

necessary for the evaluation ofS(k) with the above distribu-
-
are

-

n

tion of diameters, the following relations are relevant. L
A(s i) be an arbitrary function ofs i ; then a quantity like
( iciA(s i) in Sec. II can be calculated as follows:

(
i

ciA~s i !5E
0

`

ds f ~s!A~s!

5 (
t5I,II

c~t!E
0

`

ds f ~t!~s!A~s!,

tm
~t![

1

~s0
~t!!mE0

`

ds f ~t!~s!sm5
~ t ~t!1m!!

t ~t!! ~ t ~t!11!m
,

~3.3!

f m
~t!~a![

1

~s0
~t!!mE0

`

ds f ~t!~s!sme2as/s0
~t!

5tm
~t!S 11

a

t ~t!11
D 2~ t~t!1m11!

. ~3.4!

Using the above results, from Eq.~2.25b!, with Eqs.
~2.14a! and ~2.14b!, we obtain

Fa
~1!~s!5 (

t5I,II
c~t! f 0

~t!S ss0
~t!

2 D ,

Fa
~2!~s!5 (

t5I,II
c~t!s0

~t! f 1
~t!S ss0

~t!

2 D , ~3.5!

whereas Eq.~2.25a!, with Eqs.~2.15a! and ~2.15b!, give

Fw
~1!5 (

t5I,II
c~t!

2pr~s0
~t!!3

D

1

~ss0
~t!!3

3F f 0
~t!S ss0

~t!

2 D 1
ss0

~t!

2
f 1

~t!S ss0
~t!

2 D G ~3.6a!

and
Fw
~2!5 (

t5I ,II

c~t!

s0
~t!

pr~s0
~t!!3

D

1

~ss0
~t!!3F S ss0

~t!1
pz2s0

~t!

D
D f 0

~t!S ss0
~t!

2 D 1
pz2s0

~t!

D

ss0
~t!

2
f 1

~t!S ss0
~t!

2 D G . ~3.6b!

Moreover, using Eq.~2.21!, together with Eqs.~2.14a! and ~2.14b! and ~2.17a! and ~2.17b!, we obtain

F ~1,1!5 (
t5I,II

c~t!
2pr~s0

~t!!3

D
f a

~t!~ss0
~t!!, ~3.7a!
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F ~2,1!5 (
t5I,II

c~t!s0
~t!

2pr~s0
~t!!3

D
f b

~t!~ss0
~t!!, ~3.7b!

F ~1,2!5 (
t5I,II

c~t!
1

s0
~t!F S p

D D 2

rz2~s0
~t!!4f a

~t!~ss0
~t!!1

pr~s0
~t!!3

D
f c

~t!~ss0
~t!!G , ~3.7c!

F ~2,2!5 (
t5I,II

c~t!F S p

D D 2

rz2~s0
~t!!4f b

~t!~ss0
~t!!1

pr~s0
~t!!3

D
f d

~t!~ss0
~t!!G , ~3.7d!

where

f a
~t!~ss0

~t!!5
1

~ss0
~t!!3F12

ss0
~t!

2
2 f 0

~t!~ss0
~t!!2

ss0
~t!

2
f 1

~t!~ss0
~t!!G , ~3.8a!

f b
~t!~ss0

~t!!5
1

~ss0
~t!!3F12

ss0
~t!

2
t2
~t!2 f 1

~t!~ss0
~t!!2

ss0
~t!

2
f 2

~t!~ss0
~t!!G , ~3.8b!

f c
~t!~ss0

~t!!5
1

~ss0
~t!!2

@12ss0
~t!2 f 0

~t!~ss0
~t!!#, ~3.8c!

and

f d
~t!~ss0

~t!!5
1

~ss0
~t!!2

@12ss0
~t!t2

~t!2 f 1
~t!~ss0

~t!!#. ~3.8d!
d

:

-
y

c

r
case
efer-
The use of the results above in Eq.~2.24! yields the analytic
expression ofS(k) for a polydisperse binary mixture of har
spheres in the PY approximation promised in Sec. I.

IV. RESULTS AND DISCUSSION

We define the size-polydispersity parameterDs
(t) as the

square of the relative deviation of the Schulz distribution

Ds
~t!5t2

~t!21. ~4.1!

The distribution functionf (t)(s) is specified by two param
eters, namely,s0

(t) andt (t). The latter can also be written b
Ds

(t) as

t ~t!51/Ds
~t!21. ~4.2!

The analytic expression ofS(k) requires the specification
of eight parameters, of which only six are independent. A
tually we have to specify the concentrationc(t), the packing
fractionh (t), the average diameters0

(t) , and the polydisper-
sity parameterDs

(t) for t5I and II, where

h~t!5
p

6
r~t!~s0

~t!!3t3
~t! . ~4.3!

These are subject to the conditions that

c~ I!1c~ II !51

and
-

h~ II !

h~ I!
5

c~ II !

c~ I! S s0
~ II !

s0
~ I! D 3

t3
~ II !

t3
~ I!

. ~4.4!

In the equation above, by using Eqs.~3.3! and~4.1!, t3
(t) may

be written as

t3
~t!5~Ds

~t!11!~2Ds
~t!11! ~t5I,II !.

FIG. 1. Polydisperse hard-sphere PY structure factorS(k) with
parameters~see text! c(I )50.5, h50.3, andx50.2, with the fol-
lowing values for (Ds

(I) ,Ds
(II )): (0.0,0.0) for case A, (0.1,0.0) fo

case B, (0.0,0.1) for case C, and (0.1,0.1) for case D. Note that
A denotes the monodisperse results, which are included as a r
ence.
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For the calculations presented below we choose the
lowing independent parameters:c(I) , h, x[h (II) /h, Ds

(I) ,
Ds

(II) , and s0, which is chosen as the unit of length an
defined by

h5~p/6!rs0
3 . ~4.5!

Moreover, using Eqs.~4.3! and ~4.5!, we can write

s0
~t!

s0
5S h~t!

hc~t!t3
~t!D 1/3

~t5I,II !, ~4.6!

which satisfies Eq.~4.4! automatically.
In all our calculations we assume a binary mixture

equiatomic composition,c(I)50.5, and packing fractionh
50.3. Figs. 1–3 show the dependence ofS(k) on Ds

(I) and
Ds

(II) under different packing conditions. Figure 1 show
S(k) for x50.2, Fig. 2S(k) for x50.4, and Fig. 3S(k) for
x50.5. In all the figures case A represents the monodisp
case, i.e.,Ds

(I)5Ds
(II) 50.0. For cases B, C, and D we use

values (Ds
(I) ,Ds

(II) )5(0.1,0.0), (0.0,0.1), and (0.1,0.1), re
spectively.

All figures show that as the polydispersity increases,
oscillation in S(k) is damped rapidly beyond the princip
peak,S(k) increases in the lowk region, and the maximum
of S(k) decreases. Such a behavior ofS(k) is basically the
same as in the single-species polydisperse PY fluid@1,2,5#.
The polydispersity effect in case B is stronger than tha
case C in Figs. 1 and 2, while in Fig. 3 the effects are

FIG. 2. Same as in Fig. 1, but withx50.4.
.

ys
l-

t

se

e

n
e

same in both cases B and C. When the average particle s
in case A in each of the figures are considered, the poly
persity of the species with the larger average particle s
results in the stronger effect.

Finally, the following comments are in order. First, it
interesting to know howS(k) depends on the moments of th
Schulz distribution function. In order to find this out, w
expand Eq.~3.4! in terms ofa to obtain

f m
~t!~a!5 (

n50

`
~21!nan

n!
tn1m
~t! ,

wheretn1m
(t) is the nondimensional (n1m)th moment of the

Schulz distribution defined by Eq.~3.3!. This expansion
shows that for the case of finite momentum transfer,kÞ0,
S(k) depends on all the moments of the distribution. Ho
ever, in the long wavelength limit,k→0 depends only on the
valuesm50, 1, 2, and 3 oftm

(t) , sincef m
(t)(a)5tm

(t) , a result
that is consistent with the thermodynamic properties o
polydisperse hard-sphere PY fluid@16#. Second, the formal-
ism presented above can be extended, in a straightforw
fashion but not trivially, to the case of anM-species polydis-
perse fluid with appropriate Schulz distributed diameters
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FIG. 3. Same as in Fig. 1, but withx50.5.
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