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Analytical structure factor of a two-species polydisperse Percus-Yevick fluid with bimodal Schulz
distributed diameters
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An analytic expression is obtained for the static structure fa8tk) of a two-species polydisperse fluid of
hard spheres in the Percus-Yevick approximation. The size polydispersity is included via a bimodal Schulz
distribution. The derived expression is used to study the effectS(&h of the size polydispersity in a
equiatomic binary mixture of hard-spheres. The main features of the effectél)atke damping of the
oscillations inS(k) beyond its principal peak and larger valuess{k) in the long-wavelength limit, relative
to the monodisperse case; af®) the stronger effect of the species with the larger average particle size.
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PACS numbsgs): 82.70.Kj, 61.20.Gy
I. INTRODUCTION Il. STRUCTURE FACTOR OF PY FLUID

We number the components of the fluid under study as

Colloidal dispersions, as found in nature, are normally
multispecies, polydisperse, heterogeneous systems. This
work is concerned with a model to study multispecies, poly-
disperse colloidal fluids. Given the complexity of such sys- uperscripts which indicate species | and Il as there is no
tems analytical models have been proposed in the form ossibility of confusion.
polydisperse hard-sphere fluifis—5], polydisperse charged The partial structure factor of componen@ndj, S;;(K),
hard sphere fluids[6,7], and polydisperse hard-sphere ;g given by the general expressif@] !
Yukawa fluids[8—-11].

Griffith, Triolo, and Compere have recently derived an Sj(k)=8;—2 Rﬁ[{afs(ik)}ij]- (2.2
analytic expression for the static structure factor of a single-
species polydisperse Percus-Yevi@RY) hard-sphere fluid where theij element of the symmetric matrixy(s) is de-
using the Schulz distribution for the hard-sphere diameterfined by
[5]. Here we extend this work to the case of a two-species
polydisperse PY hard-sphere fluid. As will be shown below, {3’ ()= 2
this extension is made possible by the results of our recent s
previous work{10,11].

Let us consider a two-species polydisperse fluid in a voldn Eg. (2.3 ¢; is the number concentration of theeompo-
umeV. We represent each species as | and Il, respectivelynent,p denotes the total number density, and
To consider the polydispersity we assume that each species "
is itself a multicomponent fluid with an arbitrary number of aij(s)zf drrg;(r)e”s'
components. The number of components of spetiés=1 0

and 1) is denoted byn(”, and thei component of species defi he Laol ¢ £ h a1 pair distributi
7(7=1 and ll) consists Of\/pi(T) hard-sphere particles with fuen::rlﬁjsntg e(r)ap ace transform of the partial pair distribution
ij{r).

diametero{”, wherep(" is the number density of compo- 1, o (ot structure factoB(k) is defined by
nenti of speciesr. For such a fluid we can make use of the
analytic solution of the Ornstein-Zernik®©Z) equation in

i=12, ... pOnW+1, ... nO4n. (2.

Henceforth we drop, until the end of this section, all the

(€02 (5). 2.3

_ 12
the PY approximatiofi12,13. In the limit of infinite number S(k)_iZJ (cic) %5 (k). 24
of components, the fluid consists of spheres with continu-
ously distributed diamaters. Note that the definition ofS5(k) used here differs from its

Below we present the analytic expression for the statiqysual definition, which also involves the scattering form fac-
structure factoS(k) of the two-species polydisperse fluid of tors. We follow here the definition used, for instance, in
PY hard spheres with bimodal Schulz distributed diametersRefs.[5] and[10], and reserve the name of scattering inten-
Moreover, we also illustrate the effects of polydispersity onsity 1(k) to what other authors call the “total structure fac-
S(k). In Sec. Il we present a useful, compact forn5k) of  tor.” We shall not make reference 1gk) in the rest of the
a hard-sphere PY fluid which is obtained by using thepaper. Note also that, given Eqg.2) and(2.4), the calcu-
method discussed in our recent previous paf@é}. The ac-  lation of S(k) requires a knowledge of(s), to which we
tual result forS(k) is presented in Sec. Ill. The effects of turn now for the particular case of the hard-sphere fluid in
polydispersity onS(k) are shown in Sec. IV. the PY approximation.
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In the Baxter formalism, the PY solution of the OZ equa-

tion is given by the Baxter functio®;;(r), or its transform
Qjj(is), as[13]

o0

bij(is):f}\j

=eNi[odyy(so)) A+ 0Py (s0)Bi], (2.5

drQjj(rye*"

where
2 s
AJ:T( +2—Azaj>, (2.63
ar
IBJZKO'j y (26k))
P (X)=[1—x/2— (1+x/2)e *]/x5,
e1(X)=[1—x—e X]/x?, (2.60
§m=2| p|0'|m,
and
A=1-7{53/6=1— 7, (2.60

where n denotes the packing fraction.

Using the PY solution above, the Laplace transform of the

OZ equations readd4,15,
§|: 27Gi (S)[ 8, —cipQy;(is)]

Slof e~ Y%
1+ — —

5 (2.7

Aj'f‘SBj

Equation(2.7) can be rewritten, by using Eq@2.3), in the
matrix form
74(s)Q(is)=A(s), 2.8

where theij elements of the matrice®(is) and A(s) are
defined by

{Q(is)};=8;; — (cic))"pQy(is) (2.9
and
Aij(s)z(cic’gu2 S (1+ﬂ Aj—i—s,B]-]. (2.10
s 2
Equation(2.8) may be written as
74(s)=A(s)R(s), (2.1
whereR(s) is defined by
Q(is)R(s)=1. (2.12

Now, with the use of Eqs(2.69 and (2.6b, Eq. (2.10
gives
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Aij(S)E(CiCj)llze_soij E Wi(m(s)(}(](n), (213)
n=12

where
V=1, (2.143
a?=0, (2.14b
(1) gy 2P| 14 57
W (S):A_S?’ l+7 ' (2.153
and
oo ]

Moreover, the substitution of Eq2.5) into Eq. (2.9), with
the use of Eqs(2.63 and(2.6b), yields

[QUis)}y =8 = (cicy) e 3 V()" (2.16
where

Yi(s)= ZAﬂam(sai) (2.173
and
Y2(5)= T2 T2 3y (o) 4 opu(so | (217h

Al A
From the definition oRR(s) [Eq. (2.12)], and the expres-

sion for{Q(is)}ij [Eq.(2.16)], theij matrix elements of the
former are given bysee Refs[9-11])

Rij(s)= 8+ (cic))¥%eNi > Y{(M(s)L("(s) (2.18
n=1,2
with

L}”)(S)=m212 GMM(s)a|™ . (219

The matrixG(s), with matrix element$&("™(s), is defined
by the relation

G(s)[1-F(s)]=1, (2.20
with the nm matrix elements of(s) given by
Fm(s)=2> caMY{™(s). (2.2
I

We are now in a position to write dows(k). First, sub-
stitute Eqs(2.13 and(2.18 into Eq.(2.11), and also use Eq.
(2.19, to obtain

{3’5(5)}”':(Cicj)llze_saijZ E Wi(n)(s)G(n,m)(S)al(m)_
n m
(2.22
Second, substitute E¢R.22 into Eq. (2.2) to give
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S (k)= &;—(cic)) V22 R{e-sauz > w"(s)GMM(s)al™ (2.23
nom s=ik
Finally, from Egs.(2.4) and(2.23, we obtain
S(k)=1-2 R{E 2 FY(9)GM™(s)FM(s)| (2.24
nom s=ik
|
where tion of diameters, the following relations are relevant. Let
A(o;) be an arbitrary function ofr;; then a quantity like
F(”)(s)EE c.e SN (s) (2.253 2i¢;A(o;) in Sec. Il can be calculated as follows:
w 7 I I B
and EI‘, ciA(ai)ZJO do f(a)A(0)
FElm)(S)EEi Ciefsailzai(m)_ (2.25b _ E c(? wdof(f)(U)A(a)’
=11l 0
Equation(2.24), together with Eqs(2.259 and(2.25h, ren- () +m)!
ders a compact and useful expression3@k) which we use tﬁr?— f do f(o)o"=—T—,
in Sec. Il in a specific context. (ey)™Jo tONE 0+ )"
3.3
Ill. S(k) FOR TWO SPECIES POLYDISPERSE PY FLUID o
(1) — (1) a0'/0'
We apply the results obtained in Sec. Il to study a two- fm ()= T>)mf do fi7(o)o™e
species mixture of hard spheres where both the species are
size polydisperse, and the distribution of hard sphere diam- —(t7+m+1)
eters is given by the bimodal Shultz distributi@ee below. =t(r ( ) (3.4
The application corresponds to a case thi@tandn” are t0+1

infinite. Write the number of hard spheres in the domain
(o,0+do) by Vpf(o)do; then the distribution of diameters
f(o) is given by

Using the above results, from Ed@2.25h, with Egs.
(2.143 and(2.14b, we obtain

FO > Sag))
f(0)= 3 c10), (3.2) (8)= 2 ¢
7-)
with ¢(?=p(7/p. The Shultz distribution functiof” (o) is 2 (gl g(n| 22
F./(s)= c fi , (3.5
defined as = 2
N t”’+1at<r> NEIR whereas Eq(2.259, with Egs.(2.153 and(2.15D, give
() = _
c

F(l):
(3.2 W T:Eul A (sat™)3
where o denote the average diameters, affél are non- ) A ) sol”
negative integers. x| fT 5 + 5 fir 5 (3.6a
In order to calculate th&("(s), F{™(s), andF(™™(s)
necessary for the evaluation 8¢k) with the above distribu- and

(7) (7))3 (7) (7) (7) (7)
c'” mwp(o 1 {0 SO, w0t Sa' So,
F@2 = ploo’) [(Sggruﬂ)fg)( 0 ) {200’ (f)( 0 ) (3.6b
=T UBT) A (Sggﬂ)?'[ A 2 A 2 2
Moreover, using Eq(2.21), together with Egs(2.14g and(2.14h and(2.179 and(2.17h, we obtain
2mp(oy))®
Fbb= > ¢ ————f{(soy"), (3.79
=1l
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2mp(ay)?
Feb= 3 o) —— 1 (s, (3.7
1|[m\? , ; - WP(UBT))S - -
F2= 2> ¢ (ﬂ[(g) P o) D (s0l) + =1 (sof) |, (3.79
=1 Ty
2 (743
™ T T T wp(oo ) T T
F2= 3 o (z) pézwab“fé,)(soa)wTf&ksoé))}, (3.79
where
T T 1 SO-(OT) T T SO-(OT) T T
7 (sol)= (s(fgﬂ)?'{l_ 5~ 6 (sot") — —— 11 (sat") |, (3.89
1 [ sol” say”
f(T)(Sa.(T))z 1— t(T)_f(T)(SO.(T))__f(f)(SO.(T)) , (3.8
b 0 (Sa_gr)):;[ 2 2 1 0 2 2 0
f(sop)) = —75[1—sog” — ft"(sog™)], (3.80
(sop”)
and
fi(sog)) = —55[1-sog"ty) — 17 (sop)], (3.80
|
The use of the results above in Eg.24) yields the analytic M ch ol 3t(”>
expression o5(k) for a polydisperse binary mixture of hard YCERIRD) % % (4.9
spheres in the PY approximation promised in Sec. . n ¢\ op t3
IV. RESULTS AND DISCUSSION In the equation above, by using E¢8.3) and(4.1), t{” may
We define the size-polydispersity parameEf) as the ~P€ written as
square of the relative deviation of the Schulz distribution:
DG ty’=(D7+1)(2D+1) (r=1,11).
D{P=t\"—1. 4.2
The distribution functiorf(” (o) is specified by two param- 16
. L) —
eters, namelyg{” andt(”. The latter can also be written by n=03, n"m=02
fo) as 12t Q P =é=0s
t"=1D " -1. (4.2) .
g 08
The analytic expression &(k) requires the specification 2 @O0 DY) (o, ol
of eight parameters, of which only six are independent. Ac- 98(1)83)) ((l‘é;g;j))
tually we have to specify the concentratiof?, the packing 04t C:(00,01)  (1.17,067)
fraction (", the average diameter}” , and the polydisper- — D:(0.Lo.H)  (107,0.67)
sity parameteD (" for 7=1 and II, where oo o .
- 0.0 5.0 10.0 15.0 20.0
7' =gp o). (4.3 ko,
) N FIG. 1. Polydisperse hard-sphere PY structure fag{ér) with
These are subject to the conditions that parametergsee text c()=0.5, =0.3, andx=0.2, with the fol-
0 i lowing values for P, D{M): (0.0,0.0) for case A, (0.1,0.0) for
c’/+c=1 case B, (0.0,0.1) for case C, and (0.1,0.1) for case D. Note that case

A denotes the monodisperse results, which are included as a refer-
and ence.
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1.6 1.6
n=03, "'m=04 1=03, 'm=05
(R {t) I dy — (Ih
12 b M =dM=9s5 12l M =M=05
_— ~_
E 08 | Eo 038
g o Wb A o o
(D5, D) (af’, o) (Ds, Do) (of, o)
. A:(0.0,0.0)  (1.06,0.93) A:(0.0,0.0)  (1.00, 1.00)
B:(0.1,0.0)  (0.97,0.93) B:(0.1,0.0)  (0.91,1.00)
04 F C:(0.0,0.1)  (1.06,0.85) 04 F C:(0.0,0.1)  (1.00,0.91)
D:(0.1,0.1)  (0.97,0.85) D:(0.1,0.1)  (0.91,0.91)
A
0.0 1L I 1 n L I 0'0 I 1 1
0.0 5.0 10.0 150 20.0 0.0 50 100 15.0 20.0
ko, ko,
FIG. 2. Same as in Fig. 1, but with=0.4. FIG. 3. Same as in Fig. 1, but witk=0.5.

For the calculations presented below we choose the folsame in both cases B and C. When the average particle sizes
lowing independent parameterst, 7, x=7"/75, DV in case A in each of the figures are considered, the polydis-

o

DM “and oy, which is chosen as the unit of length and persity of the species with the larger average particle size
dr—.:rfin,ed b o results in the stronger effect.
y Finally, the following comments are in order. First, it is
n=(ml6)pa?. (4.5 interesting to know hov(k) depends on the moments of the
0 Schulz distribution function. In order to find this out, we
Moreover, using Eqs4.3) and (4.5), we can write expand Eq(3.4) in terms ofa to obtain
*© nan
() (n |13 gy TDA
o fi'(a)= —Ft ,
o T\ (=1, 4.6 w@)=2 it
0o nc Ity

wheret{? is the nondimensionaln(+m)th moment of the
which satisfies Eq(4.4) automatically. Schulz distribution defined by Eg3.3). This expansion

In all our calculations we assume a binary mixture atshows that for the case of finite momentum transket,0,
equiatomic compositiong(’ =0.5, and packing fractio;  S(k) depends on all the moments of the distribution. How-
=0.3. Figs. 1-3 show the dependenceS¢k) on D!’ and  ever, in the long wavelength limik—0 depends only on the
DM under different packing conditions. Figure 1 showsvaluesm=0, 1,2, and 3 of{y, sincef{;(a)=t{;, a result
S(k) for x=0.2, Fig. 2S(k) for x=0.4, and Fig. 35(k) for ~ that is consistent with the thermodynamic properties of a
x=0.5. In all the figures case A represents the monodisperseolydisperse hard-sphere PY flUiti6]. Second, the formal-
case, i.e.D"=D{"=0.0. For cases B, C, and D we used isSm presented above can be extended, in a straightforward
values DST') ,DST”))=(0.1,O.O), (0.0,0.1), and (0.1,0.1), re- fashion b_ut not trivially, to the case of_ M_—speciesf polydis-
spectively. perse fluid with appropriate Schulz distributed diameters.

All figures show that as the polydispersity increases, the
oscillation in S(k) is damped rapidly beyond the principal
peak,S(k) increases in the low region, and the maximum The authors would like to thank Professor Moises Silbert
of S(k) decreases. Such a behaviorS{k) is basically the at the University of East Anglia for critical readings of the
same as in the single-species polydisperse PY flLjd,5). manuscript. This work was partially supported by a Grant-
The polydispersity effect in case B is stronger than that inin-Aid for Scientific Research of Monbusho, the Ministry of
case C in Figs. 1 and 2, while in Fig. 3 the effects are theEducation, Science, and Culture of Japan.
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